China high quality One Piece Rigid Coupling Rsc1-30-St (Ruland MCLX-30-30-F) , Without Keyway

Product Description

CHINAMFG Rigid Shaft Coupling:
 

Design available: one-piece or two-piece or set screw
                            With keyway or without keyway

Material available: Aluminum
                 Carbon Steel Black Oxidized
                 Stainless Steel

Size available: 6mm to 50mm shaft fit
              1/4” to 2” shaft fit
 
Features:  Cost saving for economy
          High torque capacity
          Zero backlash
          Without the shaft damage and fretting
          Misalignment free
 

Clamp Style Rigid Couplings for applications where alignment is critical, no backlash is desired, and flexibility is not required. The one-piece rigid coupling wraps around the shaft,  providing high torsional holding power without the shaft damage and fretting.  The two-piece rigid coupling has the additional benefit of allowing for disassembly and maintenance without removal of other components.
 

Black Oxide Steel Stainless Steel Inner Dia mm Outer Dia mm Length mm Clamp Screw Weight g
RSC1-6-ST RSC1-6-SS 6 18 30 M 3 x 8 47
RSC1-8-ST RSC1-8-SS 8 24 35 M 3 x 10 102
RSC1-10-ST RSC1-10-SS 10 29 45 M 4 x 12 185
RSC1-12-ST RSC1-12-SS 12 29 45 M 4 x 12 180
RSC1-14-ST RSC1-14-SS 14 34 50 M 5 x 16 272
RSC1-15-ST RSC1-15-SS 15 34 50 M 5 x 16 266
RSC1-16-ST RSC1-16-SS 16 34 50 M 5 x 16 261
RSC1-20-ST RSC1-20-SS 20 42 65 M 6 x 16 518
RSC1-25-ST RSC1-25-SS 25 45 75 M 6 x 16 623
RSC1-30-ST RSC1-30-SS 30 53 83 M 6 x 18 920
RSC1-35-ST RSC1-35-SS 35 67 95 M 8 x 25 1880
RSC1-40-ST RSC1-40-SS 40 77 108 M 8 x 25 2710
RSC1-50-ST RSC1-50-SS 50 85 124 M 10 x 25 3520

 
 

Black Oxide Steel Stainless Steel Inner Dia mm Outer Dia mm Length mm Clamp Screw Weight g
RSC2-6-ST RSC2-6-SS 6 18 30 M 3 x 8 47
RSC2-8-ST RSC2-8-SS 8 24 35 M 3 x 10 102
RSC2-10-ST RSC2-10-SS 10 29 45 M 4 x 12 185
RSC2-12-ST RSC2-12-SS 12 29 45 M 4 x 12 180
RSC2-14-ST RSC2-14-SS 14 34 50 M 5 x 16 272
RSC2-15-ST RSC2-15-SS 15 34 50 M 5 x 16 266
RSC2-16-ST RSC2-16-SS 16 34 50 M 5 x 16 261
RSC2-20-ST RSC2-20-SS 20 42 65 M 6 x 16 518
RSC2-25-ST RSC2-25-SS 25 45 75 M 6 x 16 623
RSC2-30-ST RSC2-30-SS 30 53 83 M 6 x 18 920
RSC2-35-ST RSC2-35-SS 35 67 95 M 8 x 25 1880
RSC2-40-ST RSC2-40-SS 40 77 108 M 8 x 25 2710
RSC2-50-ST RSC2-50-SS 50 85 124 M 10 x 25 3520

rigid coupling

Can Rigid Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, rigid couplings can be used in both horizontal and vertical shaft arrangements. Rigid couplings are designed to provide a solid, non-flexible connection between two shafts, making them suitable for various types of shaft orientations.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the two shafts are positioned parallel to the ground or at a slight incline. Rigid couplings are commonly used in horizontal setups as they efficiently transmit torque and maintain precise alignment between the shafts. The horizontal orientation allows gravity to aid in keeping the coupling elements securely in place.

Vertical Shaft Arrangements: In vertical shaft arrangements, the two shafts are positioned vertically, with one shaft above the other. This type of setup is often found in applications such as pumps, compressors, and some gearboxes. Rigid couplings can also be used in vertical shaft arrangements, but additional considerations must be taken into account:

  • Keyless Design: To accommodate the vertical orientation, some rigid couplings have a keyless design. Traditional keyed couplings may experience issues with keyway shear due to the force of gravity on the key, especially in overhung load situations.
  • Set Screw Tightening: When installing rigid couplings in vertical shaft arrangements, set screws must be tightened securely to prevent any axial movement during operation. Locking compound can also be used to provide additional security.
  • Thrust Load Considerations: Vertical shaft arrangements may generate thrust loads due to the weight of the equipment and components. Rigid couplings should be chosen or designed to handle these thrust loads to prevent axial displacement of the shafts.

It’s essential to select a rigid coupling that is suitable for the specific shaft orientation and operating conditions. Proper installation and alignment are critical for both horizontal and vertical shaft arrangements to ensure the rigid coupling’s optimal performance and reliability.

rigid coupling

Can Rigid Couplings Be Used in Applications with Varying Operating Temperatures?

Rigid couplings are versatile mechanical components that can be used in a wide range of applications, including those with varying operating temperatures. However, the selection of the appropriate material for the rigid coupling is crucial to ensure its reliable performance under different temperature conditions.

Material Selection: The choice of material for the rigid coupling depends on the specific operating temperature range of the application. Common materials used in manufacturing rigid couplings include steel, stainless steel, and aluminum, among others. Each material has its own temperature limitations:

Steel: Rigid couplings made from steel are suitable for applications with moderate to high temperatures. Steel couplings can handle temperatures ranging from -40°C to around 300°C, depending on the specific grade of steel used.

Stainless Steel: Stainless steel rigid couplings offer higher corrosion resistance and can be used in applications with more demanding temperature environments. They can withstand temperatures from -80°C to approximately 400°C.

Aluminum: Aluminum rigid couplings are commonly used in applications with lower temperature requirements, typically ranging from -50°C to around 120°C.

Thermal Expansion: When selecting a rigid coupling for an application with varying temperatures, it is essential to consider thermal expansion. Different materials have different coefficients of thermal expansion, meaning they expand and contract at different rates as the temperature changes. If the operating temperature fluctuates significantly, the thermal expansion of the rigid coupling and the connected components must be carefully accounted for to avoid issues with misalignment or binding.

Extreme Temperature Environments: For applications with extremely high or low temperatures beyond the capabilities of traditional materials, specialized high-temperature alloys or composites may be required. These materials can withstand more extreme temperature conditions but may come with higher costs.

Lubrication: The choice of lubrication can also play a role in the suitability of rigid couplings for varying temperature applications. In high-temperature environments, consideration should be given to using high-temperature lubricants that can maintain their effectiveness and viscosity at elevated temperatures.

In conclusion, rigid couplings can indeed be used in applications with varying operating temperatures, but careful material selection, consideration of thermal expansion, and appropriate lubrication are essential to ensure reliable and efficient performance under changing temperature conditions.

rigid coupling

Materials Used in Manufacturing Rigid Couplings:

Rigid couplings are designed to provide a strong and durable connection between two shafts, and they are commonly made from a variety of materials to suit different applications. The choice of material depends on factors such as the application’s environment, load capacity, and cost considerations. Some common materials used in manufacturing rigid couplings include:

  • 1. Steel: Steel is one of the most widely used materials for rigid couplings. It offers excellent strength, durability, and resistance to wear. Steel couplings are suitable for a wide range of applications, including industrial machinery, automotive systems, and power transmission.
  • 2. Stainless Steel: Stainless steel couplings are used in applications where corrosion resistance is crucial. They are well-suited for environments with high humidity, moisture, or exposure to chemicals. Stainless steel couplings are commonly used in food processing, pharmaceuticals, marine, and outdoor applications.
  • 3. Aluminum: Aluminum couplings are known for their lightweight and corrosion-resistant properties. They are often used in applications where weight reduction is essential, such as aerospace and automotive industries.
  • 4. Brass: Brass couplings offer good corrosion resistance and are commonly used in plumbing and water-related applications.
  • 5. Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications and machinery.
  • 6. Bronze: Bronze couplings are known for their excellent wear resistance and are often used in applications involving heavy loads and low speeds.
  • 7. Plastics: Some rigid couplings are made from various plastics, such as nylon or Delrin. Plastic couplings are lightweight, non-conductive, and suitable for applications where electrical insulation is required.

It’s essential to consider the specific requirements of the application, including factors like load capacity, operating environment, and cost, when choosing the appropriate material for a rigid coupling. The right material selection ensures that the coupling can withstand the forces and conditions it will encounter, resulting in a reliable and long-lasting connection between the shafts.

China high quality One Piece Rigid Coupling Rsc1-30-St (Ruland MCLX-30-30-F) , Without Keyway  China high quality One Piece Rigid Coupling Rsc1-30-St (Ruland MCLX-30-30-F) , Without Keyway
editor by CX 2023-11-16

As one of leading rigid coupling manufacturers, suppliers and exporters of mechanical products, We offer rigid coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of rigid coupling

Recent Posts